

average acceleration, when the particle completes half revolution?

1.

Max. Marks: 200	I	Date: 28.11.2022

JB 3 MR BATCH PHYSICS: PART TEST (SET B)

Topic: Circular Motion

A particle is moving along a circular path of radius 5 m, moving with a uniform speed of 5 ms⁻¹. What will be the

	(a)	zero		(b)	1	$0/\pi$ ms ⁻²	(c)	10 m	ns^{-2}		(d)	None of thes	e
2.	Matcl	h the fo	llowing	columns a	and ch	oose the corre	ct option fro	om the c	odes giv	ven belo	w.		
	For u	niform	circular	motion.									
		Colu	mn I					Colu	m II				
	A.	Spee	d				1.	Cons	stant				
	B.	Velo	city				2.	Varia	able				
	C.	Mag	nitude o	f accelera	tion		3.	Zero					
	D.	Acce	eleration										
		A	В	C	D			A	В	C	D		
	(a)	1	2	2	1		(b)	1	2	1	2		
	(c)	1	1	1	2		(d)	2	1	1	2		
3.		_		-		and m_2 move io of their line			cles of 1	radi r ₁ a	nd r ₂ r	respectively.	If their
	(a)	m_1 :	m_2	(b)	r	$_{1}:r_{2}$	(c)	1:1			(d)	$m_1r_1: m_2r_2$	
4.	A wh	eel com	pletes 2	000 revol	utions	to cover the 9	.5 km distai	nce, the	n the dia	meter of	f the w	heel is	
	(a)	1.5 n	n	(b)	1	.5 cm	(c)	7.5 c	m		(d)	7.5 cm	
						Space fo	r Rough W	<u>'ork</u>					

5.		ange in the centripe the original value, w		e of a body moving in	a circu	ılar path, if spe	ed is m	ade hal	f and radius is made 5
	(a)	increase by $\frac{18}{20}$	(b)	decrease by $\frac{19}{20}$	(c)	decrease by	$\frac{9}{20}$	(d)	increase by $\frac{17}{20}$
6.	•	-	•	ce of constant magnitude le takes place in a plar		-	perpen	dicular	to the velocity of the
	(a)	its velocity is cons	stant		(b)	its accelerate	ion is co	onstant	
	(c)	its kinetic energy	is consta	ant	(d)	it moves in a	a straigl	nt line	
7.	In unif	orm circular motion	n of a pa	article					
	(a)	velocity is constan	nt but ac	eceleration is variable	(b)	velocity is v	ariable	but acc	eleration is constant
	(c)	both speed and ac	celeratio	on are constants	(d)	speed is con	stant bu	ıt accele	eration is variable
8.	The an	gular velocity of se	cond ha	nd, of a clock is					
	(a)	$\left(\frac{\pi}{6}\right)$ rad s ⁻¹	(b)	$\left(\frac{\pi}{60}\right)$ rad s ⁻¹	(c)	$\left(\frac{\pi}{30}\right)$ rad s ⁻	1	(d)	$\left(\frac{\pi}{15}\right)$ rad s ⁻¹
9.				_			-	_	r velocity is zero. It angle θ_2 , the ratio of
	(a)	1	(b)	2	(c)	3		(d)	5
10.	The arcar?	ngular speed of a ca	ar increa	ses from 600 rpm to	1200 гр	om in 10 s. W	hat is th	ne angu	lar acceleration of the
	(a)	600 rad s^{-1}	(b)	60 rad s^{-1}	(c)	$60\pi\text{ rad s}^{-1}$		(d)	$2\pi\ rad\ s^{-1}$

both in the same direction

11.

(a)

Velocity vector and acceleration vector in a uniform circular motion are related as

	(c)	both in opposite of	direction		(d)	not related to each	other				
12.	freque	•	•	<u> </u>		•		cal circle with angular motion will be equal			
	(a)	3 N	(b)	5 N	(c)	8 N	(d)	13 N			
13.		drogen atom, the el Å. The acceleration			nucleus	with velocity 2.18 ×	10 ⁶ ms ⁻	¹ in an orbit of radius			
	(a)	$9\times10^{18}~ms^{-2}$	(b)	$9\times10^{22}~ms^{-2}$	(c)	$9\times 10^{-22}\ ms^{-2}$	(d)	$9 \times 10^{12} ms^{-2}$			
14.	-	•		of radius r with a uf P about A and C is		peed v. C is the cen	tre of the	e circle and AB is the			
	(a)	1:1	(b)	1:2	(c)	2:1	(d)	4:1			
15.	A who	eel rotates with a co	nstant aı	ngular velocity of 30	0 грт. Л	The angle through wh	ich the w	heel rotates in 1 s is			
	(a)	π rad	(b)	5π rad	(c)	10π rad	(d)	20π rad			
16.	•	particles of masses it to 4:5. The ratio of		•	n circula	r paths of radii in the	ratio 4 :	7 with time periods in			
	(a)	16/28	(b)	15/28	(c)	192/875	(d)	23/28			
17.		~		in a spacecraft at an eration of the cosmon		e h = 630 km with a s	speed of	8 kms ⁻¹ . If the radius			
	(a)	9.10 ms ⁻²	(b)	9.80 ms^{-2}	(c)	10.0 ms^{-2}	(d)	9.88 ms^{-2}			
18.	(a) 9.10 ms ⁻² (b) 9.80 ms ⁻² (c) 10.0 ms ⁻² (d) 9.88 ms ⁻² A coin placed on a rotating turn table just slips if it is placed at a distance of 8 cm from the centre. If angular velocity of the turn table is doubled. It will just slip at a distance of										
	(a)	1 cm	(b)	2 cm	(c)	4 cm	(d)	8 cm			
				Space for R	ough W	<u>ork</u>					

(b)

perpendicular to each other

19.

	maxim	um velocity with wr	nich the	car can move is				
	(a)	22.4 ms ⁻¹	(b)	5.6 ms^{-1}	(c)	11.2 ms ⁻¹	(d)	None of these
20.				n the tyres and the ro n without skidding is			peed wi	th which car can be
	(a)	$40~ms^{-1}$	(b)	$20\;ms^{-1}$	(c)	$15~\mathrm{ms^{-1}}$	(d)	$10~\mathrm{ms^{-1}}$
21.	•	U		ath of radius 10 m a t to slip from the surf			is 0.5.	What should be its
	(a)	5	(b)	10	(c)	0.1	(d)	0.7
22.	•	· ·		vertical circle of rad orizontal distance cov		-		
	(a)	2R	(b)	R	(c)	$R\sqrt{2}$	(d)	4R
23.		•		of gravity at a heigh ould travel round on u				are 1 m apart. The
	(a)	$12~\mathrm{ms^{-1}}$	(b)	$18~\mathrm{ms^{-1}}$	(c)	$22~\mathrm{ms^{-1}}$	(d)	$27\ ms^{-1}$
24.	•	•		track of radius 80 m angle (Given, g = 10 i		velocity v = 36 kmh	⁻¹ . He l	nas to lean from the
	(a)	tan ⁻¹ (4)	(b)	$tan^{-1}\left(\frac{1}{8}\right)$	(c)	$\tan^{-1}\left(\frac{1}{4}\right)$	(d)	$tan^{-1}(2)$
25.	-	of mass 1 kg is rot and at the bottom o	_	a vertical circle of racle?	dius 1 n	n. What will be the di	fference	in kinetic energy a
	(Given,	$g = 10 \text{ ms}^{-2}$						
	(a)	50 J	(b)	30 J	(c)	20 J	(d)	10 J

A car of mass 1000 kg moves on a circular track of radius 20 m. If the coefficient of friction is 0.64, then the

Max. Marks: 100 Date: 28.11.2022

JB 3 MR BATCH (Set B) CHEMISTRY: PART TEST

Topic: Stereoisomerism

26. The most stable conformation of 2, 3-dibromobutane is

$$(a) \qquad \begin{matrix} H & & Br \\ & & & Br \\ & & & H \end{matrix}$$

(c)

Br

$$(d) \qquad \begin{matrix} H & Br \\ H & H \end{matrix}$$

Br

- 27. Which of the following molecules can exhibit optical activity
 - (a) 1-bromopropane

(b) 2-bromobutane

(c) 3-bromopentane

(d) Bromocyclohexane

Space for Rough Work

28. The configuration of the chiral centre and the geometry of the double bond in the following molecule can be described by

- (a) R and E
- (b) S and E
- (c) R and Z
- (d) S and Z
- 29. How many stereoisomers does this molecule have CH₃CH = CHCH₂CHBrCH₃
 - (a) 8
- (b) 2

(c) 4

- (d) 6
- 30. If 'n' represents total number of asymmetric carbon atoms in a compound, the possible number of optical isomers of the compound is
 - (a) 2n
- (b) n²

(c) 2^n

- (d) 2n + 2
- 31. Which of the following molecules is expected to rotate the plane polarized light
 - (a) HO—H CH,OH

(b) SH

(c) $\frac{H_2N}{Ph}$ $\frac{NH_2}{Ph}$

(d) $H_2N \xrightarrow{\text{COOH}} H$

32.	An org	ganic compound											
	¹ CH ₃ -	$-^{2}CH_{2} - ^{3}CH_{2} - ^{4}CH_{3}$	$CH_2 - {}^{3}CH_2 - {}^{4}CH_2 - {}^{5}CH_2 - {}^{6}CH_2 - {}^{7}CH_3$										
	To ma	ke it chiral compou	nd the a	ttack should be on wh	nich carb	oon atom							
	(a)	1	(b)	3	(c)	4	(d)	7					
33.	Which	n of the following m	olecule	contains asymmetric	carbon a	atom							
	(a)	CH ₃ CHClCOOH	(b)	CH ₃ CH ₂ COOH	(c)	CICH ₂ CH ₂ COOH	(d)	Cl ₂ CHCOOH					
34.	Which	n of the following co	ompound	ds will exhibit geome	trical isc	omerism							
	(a)	1-phenyl-2-butene	e		(b)	3-phenyl-1-butene							
	(c)	2-phyenyl-1-buter	ne		(d)	1, 1-diphenyl-1-pro	pene						
35.	Reason	n for geometrical iso	omerism	shown by 2-butene	is								
	(a)	Chiral carbon			(b)	Free rotation about	single b	ond					
	(c)	Free roation about double bond (d) Restricted rotation about double bond											
36.	Which	n of the following do	oes not s	show geometrical isor	nerism								
	(a)	1, 2-dichloro-1-pe	entene		(b)	1, 3-dichloro-2-pen	tene						
	(c)	1, 1-dichloro-1-pentene (d) 1, 4-dichloro-2-pentene											

Space for Rough Work

37. The geometrical isomerism is shown by

38. Which shows geometrical isomerism

(a)
$$H \subset C \subset R$$

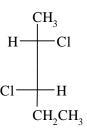
(b)
$$H_3C$$
 $E = C$ Br

(c)
$$H_3C$$
 $C=C$ B_1

$$(d) \qquad \begin{array}{c} H \\ C = C \\ C \end{array}$$

39. Geometrical isomerism is not possible in

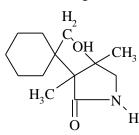
- (a) Propene
- (c) Butenedioic acid


- (b) 3-hexene
- (d) Cyclic compound

40. Among the following the most stable compound is

- (a) cis-1, 2-cyclohexanediol
- (c) cis-1, 3-cyclohexanediol

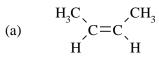
- (b) trans-1, 2-cyclohexanediol
- (d) trans-1, 3-cyclohexanediol

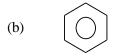

41. What is the configuration of the following molecule?

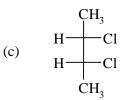
- (a) 2S, 3R
- (b) 3R, 3S
- (c) 2S, 3S
- (d) 2R, 3R
- 42. In the Fischer projection formula given below, what are the configurations of the two asymmetric centers?

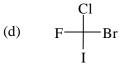
$$\begin{array}{c} CO_2H \\ H - 2 CH_3 \\ H - 3 OH \\ CH_2CH_2OH \end{array}$$

- (a) 2R, 3R
- (b) 2R, 3S
- (c) 2S, 3R
- (d) 2S, 3S
- 43. How many chiral carbon centers are present in the following molecule?


- (a) 0
- (b) 1


(c) 2


(d) 3


Space for Rough Work

44. Which of the following has no. P.O.S. (plane of symmetry)?

- 45. How many stereoisomers are there for 1-ethyl-3-methylcyclohexane?
 - (a) 2
- (b) 3

(c) 4

(d) 6

46. Consider the following two stereoisomers. How are they different?

- (a) They have different melting points
- (b) They rotate plane-polarized light in opposite directions
- (c) They have different solubilities in water
- (d) They have different indices of refraction

47. Identify meso compound:

$$(a) \qquad \begin{array}{c} CH_3 \\ H - Cl \\ Cl - H \\ CH_3 \end{array}$$

(b)
$$H_3C$$
 CH_3 CH_3

48. In which of the following compound have plane of symmetry?

(a)
$$H_3C$$
 CH_3 CH_3

$$(d) \qquad \begin{matrix} Br \\ C & C \end{matrix}$$

- 49. $H \longrightarrow OH$; Number of planes of symmetry in the given compound is:
 - (a) CO₂H
- (b) 2

(c) 3

(d) 4

- 50. OH (a) (Number of chiral centers)
 - O \longrightarrow (b) (Number of chiral centers) CO_2H

sum of chiral centers (a + b = ?) is:

- (a) 3
- (b) 4

(c) 5

(d) 6

Max. Marks: 200 Date: 28.11.2022

JB 3 MR BATCH PHYSICS: PART TEST (SET B) ANSWER KEY **Topic: Circular Motion**

(b) 2. 3. (b) (b) (a)

1.	(b)	2.	(b)	3.	(b)	4.	(a)	5.	(b)
6.	(c)	7.	(d)	8.	(c)	9.	(c)	10.	(d)
11.	(b)	12.	(d)	13.	(b)	14.	(b)	15.	(c)
16.	(b)	17.	(a)	18.	(b)	19.	(c)	20.	(d)
21.	(d)	22.	(a)	23.	(c)	24.	(b)	25.	(c)

Date: 28.11.2022

JB 3 MR BATCH **CHEMISYRY: PART TEST (SET B) ANSWER KEY Topic: Stereoisomerism**

26.	(c)	27.	(b)	28.	(c)	29.	(c)	30.	(c)
31.	(a)	32.	(b)	33.	(a)	34.	(a)	35.	(d)
36.	(c)	37.	(d)	38.	(b)	39.	(a)	40.	(d)
41.	(c)	42.	(a)	43.	(c)	44.	(d)	45.	(c)
46.	(b)	47.	(b)	48.	(a)	49.	(a)	50.	(c)